Sweeper for Magnus integrator
!! Sweeper for Magnus integrator ! ! This file is part of LIBPFASST. ! !> This module implements fully implicit Magnus method using explicit Picard sweeping module pf_mod_magnus_picard use pf_mod_dtype use pf_mod_utils implicit none !> Magnus Picard sweeper type, extends abstract sweeper type, extends(pf_sweeper_t), abstract :: pf_magpicard_t real(pfdp), allocatable :: dtsdc(:) integer :: magnus_order, qtype real(pfdp) :: dt, commutator_coefs(9,3,4) complex(pfdp), allocatable :: commutators(:,:,:) class(pf_encap_t), allocatable :: omega(:), time_ev_op(:) contains procedure :: sweep => magpicard_sweep procedure :: initialize => magpicard_initialize procedure :: evaluate => magpicard_evaluate procedure :: integrate => magpicard_integrate procedure :: residual => magpicard_residual procedure :: spreadq0 => magpicard_spreadq0 procedure :: evaluate_all => magpicard_evaluate_all procedure(pf_f_eval_p), deferred :: f_eval procedure(pf_compute_single_commutators_p), deferred :: compute_single_commutators procedure(pf_compute_omega_p), deferred :: compute_omega procedure(pf_propagate_solution_p), deferred :: propagate_solution procedure(pf_destroy_magpicard_p), deferred :: destroy procedure :: magpicard_destroy end type pf_magpicard_t interface subroutine pf_f_eval_p(this, y, t, level, f) import pf_magpicard_t, pf_encap_t, pfdp class(pf_magpicard_t), intent(inout) :: this class(pf_encap_t), intent(inout) :: y real(pfdp), intent(in ) :: t integer, intent(in ) :: level class(pf_encap_t), intent(inout) :: f end subroutine pf_f_eval_p subroutine pf_compute_single_commutators_p(this, f) import pf_magpicard_t, pf_encap_t, pfdp class(pf_magpicard_t), intent(inout) :: this class(pf_encap_t), intent(inout) :: f(:,:) end subroutine pf_compute_single_commutators_p subroutine pf_compute_omega_p(this, omega, integrals, f, nodes, qmat, dt, this_node, coefs) import pf_magpicard_t, pf_encap_t, pfdp class(pf_magpicard_t), intent(inout) :: this class(pf_encap_t), intent(inout) :: omega class(pf_encap_t), intent(inout) :: f(:,:), integrals(:) real(pfdp), intent(in) :: coefs(:,:), nodes(:), qmat(:,:), dt integer, intent(in) :: this_node end subroutine pf_compute_omega_p subroutine pf_propagate_solution_p(this, sol_t0, sol_tn, omega, level) import pf_magpicard_t, pf_encap_t, pfdp class(pf_magpicard_t), intent(inout) :: this class(pf_encap_t), intent(inout) :: sol_t0 class(pf_encap_t), intent(inout) :: omega class(pf_encap_t), intent(inout) :: sol_tn integer, intent(in) :: level end subroutine pf_propagate_solution_p subroutine pf_destroy_magpicard_p(this, Lev) import pf_magpicard_t, pf_level_t class(pf_magpicard_t), intent(inout) :: this class(pf_level_t), intent(inout) :: Lev end subroutine pf_destroy_magpicard_p end interface contains ! Perform one SDC sweep on level Lev and set qend appropriately. subroutine magpicard_sweep(this, pf, level_index, t0, dt, nsweeps, flags) use pf_mod_timer use pf_mod_hooks class(pf_magpicard_t), intent(inout) :: this type(pf_pfasst_t), intent(inout),target :: pf real(pfdp), intent(in) :: dt, t0 integer, intent(in) :: level_index integer, intent(in) :: nsweeps integer, optional, intent(in ) :: flags class(pf_level_t), pointer :: lev integer :: m, nnodes, k real(pfdp) :: t lev => pf%levels(level_index) nnodes = lev%nnodes call call_hooks(pf, level_index, PF_PRE_SWEEP) call lev%Q(1)%copy(lev%q0) call start_timer(pf, TLEVEL+lev%index-1) do k = 1, nsweeps ! Copy values into residual do m = 1, nnodes-1 call lev%R(m)%copy(lev%Q(m+1)) end do t = t0 !$omp parallel do private(m, t) do m = 1, nnodes ! t = t + dt*this%dtsdc(m) t=t0+dt*lev%nodes(m) call this%f_eval(lev%Q(m), t, lev%index, lev%F(m,1)) end do !$omp end parallel do !$omp barrier call magpicard_integrate(this, lev, lev%Q, lev%F, dt, lev%I) if (this%magnus_order > 1 .and. nnodes > 2) then call start_timer(pf, TAUX) call this%compute_single_commutators(lev%F) call end_timer(pf, TAUX) endif !! this loop not OMP'd because the deferred procs are OMP'd do m = 1, nnodes-1 call start_timer(pf, TAUX+1) call this%compute_omega(this%omega(m), lev%I, lev%F, & lev%nodes, lev%sdcmats%qmat, dt, m, this%commutator_coefs(:,:,m)) call end_timer(pf, TAUX+1) end do !$omp parallel do private(m) do m = 1, nnodes-1 call this%propagate_solution(lev%Q(1), lev%Q(m+1), this%omega(m), lev%index) end do !$omp end parallel do call pf_residual(pf, lev, dt) call call_hooks(pf, level_index, PF_POST_SWEEP) end do ! Loop over sweeps call lev%qend%copy(lev%Q(nnodes)) call end_timer(pf, TLEVEL+lev%index-1) end subroutine magpicard_sweep subroutine magpicard_initialize(this, lev) class(pf_magpicard_t), intent(inout) :: this class(pf_level_t), intent(inout) :: lev integer :: m, nnodes this%commutator_coefs = 0.0_pfdp this%npieces = 1 nnodes = lev%nnodes allocate(this%dtsdc(nnodes-1)) this%dtsdc = lev%nodes(2:nnodes) - lev%nodes(1:nnodes-1) ! SDC time step size (unscaled) call get_commutator_coefs(this%qtype, nnodes, this%dt, this%commutator_coefs) call lev%ulevel%factory%create_array(this%omega, nnodes-1, & lev%index, lev%shape) call lev%ulevel%factory%create_array(this%time_ev_op, nnodes-1, & lev%index, lev%shape) do m = 1, nnodes-1 call this%omega(m)%setval(0.0_pfdp) call this%time_ev_op(m)%setval(0.0_pfdp) end do end subroutine magpicard_initialize !> Compute SDC integral !> fintSDC = \int_{t_n}^{t_m} fSDC dt subroutine magpicard_integrate(this, lev, qSDC, fSDC, dt, fintSDC, flags) class(pf_magpicard_t), intent(inout) :: this class(pf_level_t), intent(in ) :: lev class(pf_encap_t), intent(in ) :: qSDC(:), fSDC(:, :) real(pfdp), intent(in ) :: dt class(pf_encap_t), intent(inout) :: fintSDC(:) integer, optional, intent(in ) :: flags integer :: j, m do m = 1, lev%nnodes-1 call fintSDC(m)%setval(0.0_pfdp) do j = 1, lev%nnodes call fintSDC(m)%axpy(dt*lev%sdcmats%qmat(m,j), fSDC(j,1)) end do end do end subroutine magpicard_integrate ! Evaluate function values subroutine magpicard_evaluate(this, lev, t, m, flags, step) use pf_mod_dtype class(pf_magpicard_t), intent(inout) :: this real(pfdp), intent(in ) :: t integer, intent(in ) :: m class(pf_level_t), intent(inout) :: lev integer, optional, intent(in ) :: flags, step call this%f_eval(lev%Q(m), t, lev%index, lev%F(m,1)) end subroutine magpicard_evaluate subroutine magpicard_evaluate_all(this, lev, t, flags, step) class(pf_magpicard_t), intent(inout) :: this class(pf_level_t), intent(inout) :: lev real(pfdp), intent(in ) :: t(:) integer, optional, intent(in ) :: flags, step call pf_generic_evaluate_all(this, lev, t) end subroutine magpicard_evaluate_all subroutine magpicard_residual(this, lev, dt, flags) class(pf_magpicard_t), intent(inout) :: this class(pf_level_t), intent(inout) :: lev real(pfdp), intent(in ) :: dt integer, optional, intent(in ) :: flags integer :: m do m = 1, lev%nnodes-1 call lev%R(m)%axpy(-1.0_pfdp, lev%Q(m+1)) end do lev%residual = lev%R(lev%nnodes-1)%norm() end subroutine magpicard_residual subroutine magpicard_spreadq0(this, lev, t0, flags, step) class(pf_magpicard_t), intent(inout) :: this class(pf_level_t), intent(inout) :: lev real(pfdp), intent(in ) :: t0 integer, optional, intent(in ) :: flags, step call pf_generic_spreadq0(this, lev, t0) end subroutine magpicard_spreadq0 ! Destroy the matrices subroutine magpicard_destroy(this, lev) class(pf_magpicard_t), intent(inout) :: this class(pf_level_t), intent(inout) :: lev deallocate(this%dtsdc, this%commutators) call lev%ulevel%factory%destroy_array(this%omega, lev%nnodes-1, & lev%index, lev%shape) call lev%ulevel%factory%destroy_array(this%time_ev_op, lev%nnodes-1, & lev%index, lev%shape) end subroutine magpicard_destroy subroutine get_commutator_coefs(qtype, nnodes, dt, coefs) integer, intent(in) :: qtype, nnodes real(pfdp), intent(in) :: dt real(pfdp), intent(inout) :: coefs(:,:,:) ! coefs has the structure coefs(coefs, magnus_order, node) ! for a given node, pass subroutines the coefs for a magnus order, then ! loop over coefs if (qtype == 1) then ! we're talking Lobatto nodes, where nnodes=3 includes, t0, t_1/2, tn ! need some way to differentiate whether you want full collocation or not ! coefs(1:3, 1, 1) = dt**2 * [real(8)::11/480., -1/480., 1/480.] ! coefs(1:3, 1, 2) = dt**2 * [real(8)::1/15., 1/60., 1/15.] coefs(1, 1, 1) = -1/48.d0 * dt**2 coefs(2, 1, 2) = -1/12.d0 * dt**2 elseif (qtype == 5) then coefs(1:3, 1, 1) = 1.d-3 * [real(8)::-0.708256232441739d0, 0.201427439334681d0, -0.002608155816283d0] coefs(1:3, 1, 2) = [real(8)::-0.035291589565775d0, 0.004482619613666d0, -0.000569367343553d0] coefs(1:3, 1, 3) = [real(8)::-0.078891497044705d0, -0.018131905893999d0, -0.035152700676886d0] coefs(1:3, 1, 4) = [real(8)::-0.071721913818656d0, -0.035860956909328d0, -0.071721913818656d0] coefs(:,1,:) = dt**2 * coefs(:,1,:) coefs(:, 2, 1) = & [real(8)::1.466782892818107d-6, -2.546845448743404d-6, 7.18855795894042d-7, & -3.065370250683271d-7, 6.962336322868984d-7, -1.96845581200288d-7, & -2.262216360714434d-8, -2.72797194008496d-9, 8.54843541920492d-10] coefs(:, 2, 2) = & [real(8) ::0.001040114336531742d0, -0.001714330280871491d0, 0.0001980882752518163d0, & -0.00006910549596945875d0, 0.0002905401601450182d0, -0.00003465884693947625d0, & 0.0000924518848932026d0, 0.0000125950571649574d0, -2.4709074423913880d-6] coefs(:, 2, 3) = & [real(8)::0.004148295975360902d0, -0.006387421893168941d0, -0.003594231910817328d0, & 0.000997378110327084d0, 0.0001241530237557625d0, -0.0003805975423160699d0, & 0.003718384934573079d0, 0.001693514295056844d0, -0.001060408584538103d0] coefs(:, 2, 4) = & [real(8)::0.003453850676072909d0, -0.005584950029394391d0, -0.007128159905937654d0, & 0.001653439153439147d0, 0.0d0, -0.001653439153439143d0, & 0.007128159905937675d0, 0.005584950029394475d0, -0.003453850676072897d0] coefs(:,2,:) = dt**3 * coefs(:,2,:) coefs(1, 3, 4) = dt**4 / 60.d0 else stop 'oh no! unsupported qtype' endif end subroutine get_commutator_coefs end module pf_mod_magnus_picard