pf_amisdc.f90 Source File

Old style Asynchronous MISDC sweeper


This file depends on

sourcefile~~pf_amisdc.f90~~EfferentGraph sourcefile~pf_amisdc.f90 pf_amisdc.f90 sourcefile~pf_timer.f90 pf_timer.f90 sourcefile~pf_amisdc.f90->sourcefile~pf_timer.f90 sourcefile~pf_dtype.f90 pf_dtype.f90 sourcefile~pf_amisdc.f90->sourcefile~pf_dtype.f90 sourcefile~pf_utils.f90 pf_utils.f90 sourcefile~pf_amisdc.f90->sourcefile~pf_utils.f90 sourcefile~pf_timer.f90->sourcefile~pf_dtype.f90 sourcefile~pf_utils.f90->sourcefile~pf_timer.f90 sourcefile~pf_utils.f90->sourcefile~pf_dtype.f90

Files dependent on this one

sourcefile~~pf_amisdc.f90~~AfferentGraph sourcefile~pf_amisdc.f90 pf_amisdc.f90 sourcefile~pf_amisdcq.f90 pf_amisdcQ.f90 sourcefile~pf_amisdcq.f90->sourcefile~pf_amisdc.f90

Contents

Source Code


Source Code

!! Old style Asynchronous MISDC sweeper
!
! This file is part of LIBPFASST.
!
!> Old style Asynchronous MISDC sweeper
module pf_mod_amisdc
  use pf_mod_dtype
  use pf_mod_utils
  implicit none

  !>  Asynchronous multi-implicit sweeper type (old style)
  type, extends(pf_sweeper_t), abstract :: pf_amisdc_t
     real(pfdp), allocatable :: SdiffE(:,:)
     real(pfdp), allocatable :: SdiffI(:,:)
   contains 
     procedure(pf_f1eval_p), deferred :: f1eval
     procedure(pf_f2eval_p), deferred :: f2eval
     procedure(pf_f2comp_p), deferred :: f2comp
     procedure(pf_f3eval_p), deferred :: f3eval
     procedure(pf_f3comp_p), deferred :: f3comp
     procedure :: sweep        => amisdc_sweep
     procedure :: initialize   => amisdc_initialize
     procedure :: evaluate     => amisdc_evaluate
     procedure :: integrate    => amisdc_integrate
     procedure :: residual     => amisdc_residual
     procedure :: evaluate_all => amisdc_evaluate_all
     procedure :: destroy      => amisdc_destroy
     procedure :: amisdc_destroy
  end type pf_amisdc_t

  interface 
     subroutine pf_f1eval_p(this, y, t, level, f1)
       import pf_amisdc_t, pf_encap_t, pfdp
       class(pf_amisdc_t), intent(inout) :: this
       class(pf_encap_t),  intent(in   ) :: y
       class(pf_encap_t),  intent(inout) :: f1
       real(pfdp),         intent(in   ) :: t
       integer,     intent(in   ) :: level
     end subroutine pf_f1eval_p

     subroutine pf_f2eval_p(this, y, t, level, f2)
       import pf_amisdc_t, pf_encap_t, pfdp
       class(pf_amisdc_t), intent(inout) :: this
       class(pf_encap_t),  intent(in   ) :: y
       class(pf_encap_t),  intent(inout) :: f2
       real(pfdp),         intent(in   ) :: t
       integer,     intent(in   ) :: level
     end subroutine pf_f2eval_p

     subroutine pf_f2comp_p(this, y, t, dt, rhs, level, f2)
       import pf_amisdc_t, pf_encap_t,  pfdp
       class(pf_amisdc_t), intent(inout) :: this
       class(pf_encap_t),  intent(in   ) :: rhs
       class(pf_encap_t),  intent(inout) :: y, f2
       real(pfdp),         intent(in   ) :: t, dt
       integer,     intent(in   ) :: level
     end subroutine pf_f2comp_p

     subroutine pf_f3eval_p(this, y, t, level, f3)
       import pf_amisdc_t, pf_encap_t,  pfdp
       class(pf_amisdc_t), intent(inout) :: this
       class(pf_encap_t),  intent(in   ) :: y
       class(pf_encap_t),  intent(inout) :: f3
       real(pfdp),         intent(in   ) :: t
       integer,     intent(in   ) :: level
     end subroutine pf_f3eval_p

     subroutine pf_f3comp_p(this, y, t, dt, rhs, level, f3)
       import pf_amisdc_t, pf_encap_t,  pfdp
       class(pf_amisdc_t), intent(inout) :: this
       class(pf_encap_t), intent(in   ) :: rhs
       class(pf_encap_t), intent(inout) :: y, f3
       real(pfdp),        intent(in   ) :: t, dt
       integer,    intent(in   ) :: level
     end subroutine pf_f3comp_p
  end interface

contains

  ! Perform on SDC sweep on level lev and set qend appropriately.
  subroutine amisdc_sweep(this, pf, lev, t0, dt)
    use pf_mod_timer
    class(pf_amisdc_t), intent(inout) :: this
    type(pf_pfasst_t),  intent(inout) :: pf
    real(pfdp),         intent(in)    :: dt, t0
    class(pf_level_t),  intent(inout) :: lev

    integer                           :: m, n
    real(pfdp)                        :: t
    real(pfdp)                        :: dtsdc(1:lev%nnodes-1)
    class(pf_encap_t), allocatable    :: rhsA, rhsB, QA, QB

    call start_timer(pf, TLEVEL+lev%index-1)
    
    ! compute integrals and add fas correction
    do m = 1, lev%nnodes-1
       call lev%S(m)%setval(0.0_pfdp)
       do n = 1, lev%nnodes
          call lev%S(m)%axpy(dt*this%SdiffE(m,n),        lev%F(n,1))
          call lev%S(m)%axpy(dt*lev%s0mat(m,n), lev%F(n,2))
          call lev%S(m)%axpy(dt*lev%s0mat(m,n), lev%F(n,3))
       end do
       if (allocated(lev%tau)) then
          call lev%S(m)%axpy(1.0_pfdp, lev%tau(m))
       end if
    end do

    ! do the time-stepping
    call lev%Q(1)%copy(lev%q0)

    call this%f1eval(lev%Q(1), t0, lev%index, lev%F(1,1))
    call this%f2eval(lev%Q(1), t0, lev%index, lev%F(1,2))
    call this%f3eval(lev%Q(1), t0, lev%index, lev%F(1,3))

    call lev%ulevel%factory%create_single(rhsA, lev%index, lev%shape)
    call lev%ulevel%factory%create_single(rhsB, lev%index,  lev%shape)
    call lev%ulevel%factory%create_single(QA,   lev%index,  lev%shape)
    call lev%ulevel%factory%create_single(QB,   lev%index,  lev%shape)

    call QA%setval(0.0_pfdp)
    call QB%setval(0.0_pfdp)

    t = t0
    dtsdc = dt * (lev%nodes(2:lev%nnodes) - lev%nodes(1:lev%nnodes-1))
    do m = 1, lev%nnodes-1
       t = t + dtsdc(m)
             
       ! First compute the explicit part of the right-hand side
       call rhsA%copy(lev%Q(m))
       call rhsA%axpy(dtsdc(m), lev%F(m,1))
       call rhsA%axpy(1.0_pfdp, lev%S(m))

       ! Save the right-hand side with only the explicit contribution
       call rhsB%copy(rhsA)

       ! Add the first implicit part to the right-hand side and solve for the first asynchronous update
       call rhsA%axpy(-2.0_pfdp*dtsdc(m),lev%F(m+1,2))
       call this%f2comp(QA, t, 2.0_pfdp*dtsdc(m), rhsA, lev%index, lev%F(m+1,2))

       ! Add the second implicit part to the right-hand side and solve for the second asynchronous update
       call rhsB%axpy(-2.0_pfdp*dtsdc(m),lev%F(m+1,3))
       call this%f3comp(QB, t, 2.0_pfdp*dtsdc(m), rhsB, lev%index, lev%F(m+1,3))

       ! Now we average the two asynchronous updates
       call lev%Q(m+1)%setval(0.0_pfdp)
       call lev%Q(m+1)%axpy(0.5_pfdp, QA)
       call lev%Q(m+1)%axpy(0.5_pfdp, QB)

       ! Evaluate the three right-hand sides with the updated variables
       call this%f1eval(lev%Q(m+1), t, lev%index, lev%F(m+1,1))
       call this%f2eval(lev%Q(m+1), t, lev%index, lev%F(m+1,2))
       call this%f3eval(lev%Q(m+1), t, lev%index, lev%F(m+1,3))
    end do
                         
    call lev%qend%copy(lev%Q(lev%nnodes))

    ! Destroy the temporary variables
    call lev%ulevel%factory%destroy_single(rhsA, lev%index,  lev%shape)
    call lev%ulevel%factory%destroy_single(rhsB, lev%index,  lev%shape)
    call lev%ulevel%factory%destroy_single(QA,   lev%index,  lev%shape)
    call lev%ulevel%factory%destroy_single(QB,   lev%index,  lev%shape)

    call end_timer(pf, TLEVEL+lev%index-1)

  end subroutine amisdc_sweep
     
  ! Evaluate function values
  subroutine amisdc_evaluate(this, lev, t, m)
    use pf_mod_dtype
    class(pf_amisdc_t), intent(inout) :: this
    real(pfdp),        intent(in)    :: t
    integer,           intent(in)    :: m
    class(pf_level_t),  intent(inout) :: lev

    call this%f1eval(lev%Q(m), t, lev%index, lev%F(m,1))
    call this%f2eval(lev%Q(m), t, lev%index, lev%F(m,2))
    call this%f3eval(lev%Q(m), t, lev%index, lev%F(m,3))
  end subroutine amisdc_evaluate

  ! Initialize matrices
  subroutine amisdc_initialize(this, lev)
    class(pf_amisdc_t), intent(inout) :: this
    class(pf_level_t), intent(inout) :: lev

    real(pfdp) :: dsdc(lev%nnodes-1)
    integer    :: m, nnodes

    this%npieces = 3

    nnodes = lev%nnodes
    allocate(this%SdiffE(nnodes-1,nnodes))  !  S-FE
    allocate(this%SdiffI(nnodes-1,nnodes))  !  S-BE

    this%SdiffE = lev%s0mat
    this%SdiffI = lev%s0mat

    dsdc = lev%nodes(2:nnodes) - lev%nodes(1:nnodes-1)
    do m = 1, nnodes-1
       this%SdiffE(m,m)   = this%SdiffE(m,m)   - dsdc(m)
       this%SdiffI(m,m+1) = this%SdiffI(m,m+1) - dsdc(m)
    end do
  end subroutine amisdc_initialize

  ! Destroy the matrices
  subroutine amisdc_destroy(this, lev)
    class(pf_amisdc_t), intent(inout) :: this
    class(pf_level_t), intent(inout) :: lev
    
    deallocate(this%SdiffE)
    deallocate(this%SdiffI)
  end subroutine amisdc_destroy

  ! Compute SDC integral
  subroutine amisdc_integrate(this, lev, qSDC, fSDC, dt, fintSDC)
    class(pf_amisdc_t),  intent(inout) :: this
    class(pf_level_t),  intent(in)    :: lev
    class(pf_encap_t), intent(in)    :: qSDC(:), fSDC(:, :)
    real(pfdp),        intent(in)    :: dt
    class(pf_encap_t), intent(inout) :: fintSDC(:)

    integer :: n, m, p

    do n = 1, lev%nnodes-1
       call fintSDC(n)%setval(0.0_pfdp)
       do m = 1, lev%nnodes
          do p = 1, this%npieces
             call fintSDC(n)%axpy(dt*lev%s0mat(n,m), fSDC(m,p))
          end do
       end do
    end do    
  end subroutine amisdc_integrate

  subroutine amisdc_residual(this, lev, dt)
    class(pf_amisdc_t), intent(inout) :: this
    class(pf_level_t), intent(inout) :: lev
    real(pfdp),       intent(in)    :: dt

    call pf_generic_residual(this, lev, dt)
  end subroutine amisdc_residual
  
  subroutine amisdc_evaluate_all(this, lev, t)
    class(pf_amisdc_t), intent(inout) :: this
    class(pf_level_t), intent(inout) :: lev
    real(pfdp),       intent(in)    :: t(:)

    call pf_generic_evaluate_all(this, lev, t)
  end subroutine amisdc_evaluate_all
  
end module pf_mod_amisdc